《非线性控制系统的分析与设计(英文版)》

书籍信息

版次:

页数:545

字数:

印刷时间:

开本:16开

纸 张:胶版纸

包 装:平装 是否套装:否

国际标准书号ISBN: 9787030259646

内容简介

本书全面介绍了非线性控制系统的分析与设计。全书共分为两部分。其中第一部分为第1~4章。第1章介绍了拓扑空间,第2章介绍了微流形,第3章介绍了代数、Lie群和Lie代数,它们为本书提供了研究数学背景。第二部分包括12章,即第5~16章,这些章节涵盖了可控性、可观测性、稳定性、解耦、投入产出的实现、线性化、中心流技术、输出调节、耗散系统、H 控制、切换系统和非平稳控制等方面,并给出了有关的详细设计技术。本书可供理工科大学自动控制专业的教师及研究生阅读,也可供自然科学和工程技术领域中相关专业的研究人员参考。

目录

- 1. Introduction
- 1.1 Linear Control Systems
- 1.1.1 Controllability, Observability
- 1.1.2 Invariant Subspaces
- 1.1.3 Zeros, Poles, Observers
- 1.1.4 Normal Form and Zero Dynamics
- 1.2 Nonlinearity vs Linearity
- 1.2.1 Localization
- 1.2.2 Singularity
- 1.2.3 Complex Behaviors
- 1.3 Some Examples of Nonlinear Control Systems

References

- 2. Topological Space
- 2.1 Metric Space
- 2.2 Topological Spaces
- 2.3 Continuous Mapping
- 2.4 Quotient Spaces

References

- 3. Differentiable Manifold
 - 3.1 Structure of Manifolds
 - 3.2 Fiber Bundle
 - 3.3 Vector Field
 - 3.4 One Parameter Group
- 3.5 Lie Algebra of Vector Fields
- 3.6 Co-tangent Space
- 3.7 Lie Derivatives
- 3.8 Frobenius' Theory

- 3.9 Lie Series, Chow's Theorem
- 3.10 Tensor Field
- 3.11 Riemannian Geometry
- 3.12 Symplectic Geometry

References

- 4. Algebra, Lie Group and Lie Algebra
 - 4.1 Group
 - 4.2 Ring and Algebra
 - 4.3 Homotopy
 - 4.4 Fundamental Group
 - 4.5 Covering Space
 - 4.6 Lie Group
 - 4.7 Lie Algebra of Lie Group
 - 4.8 Structure of Lie Algebra

References

- 5. Controllability and Observability
- 5.1 Controllability of Nonlinear Systems
- 5.2 Observability of Nonlinear Systems
- 5.3 Kalman Decomposition

References

- 6. Global Controllability of Affine Control Systems
- 6.1 From Linear to Nonlinear Systems
- 6.2 A Sufficient Condition
- 6.3 Multi-hierarchy Case
- 6.4 Codim = 1

References

- 7. Stability and Stabilization
 - 7.1 Stability of Dynamic Systems
 - 7.2 Stability in the Linear Approximation
 - 7.3 The Direct Method of Lyapunov
 - 7.3.1 Positive Definite Functions
 - 7.3.2 Critical Stability
 - 7.3.3 Instability
 - 7.3.4 Asymptotic Stability
 - 7.3.5 Total Stability
 - 7.3.6 Global Stability
- 7.4 LaSalle's Invariance Principle
- 7.5 Converse Theorems to Lyapunov's Stability Theorems
- 7.5.1 Converse Theorems to Local Asymptotic Stability
- 7.5.2 Converse Theorem to Global Asymptotic Stability
- 7.6 Stability of Invariant Set
- 7.7 Input-Output Stability

7.7.1 Stability of Input-Output Mapping
7.7.2 The Lur'e Problem
7.7.3 Control Lyapunov Function
7.8 Region of Attraction
References
3. Deeoupling
8.1 (f,g)-invariant Distribution
8.2 Local Disturbance Decoupling
8.3 Controlled Invariant Distribution
8.4 Block Decomposition
8.5 Feedback Decomposition
References
9. Input-Output Structure
9.1 Decoupling Matrix
9.2 Morgan's Problem
9.3 Invertibility
9.4 Decoupling via Dynamic Feedback
9.5 Normal Form of Nonlinear Control Systems
9.6 Generalized Normal Form
9.7 Fliess Functional Expansion
9.8 Tracking via Fliess Functional Expansion
References
10. Linearization of Nonlinear Systems
10.1 Poincare Linearization
10.2 Linear Equivalence of Nonlinear Systems
10.3 State Feedback Linearization
10.4 Linearization with Outputs
10.5 Global Linearization
10.6 Non-regular Feedback Linearization
References
11 Design of Center Manifold
11.1 Center Manifold
11.2 Stabilization of Minimum Phase Systems
11.3 Lyapunov Function with Homogeneous Derivative
11.4 Stabilization of Systems with Zero Center
11.5 Stabilization of Systems with Oscillatory Center
11.6 Stabilization Using Generalized Normal Form
11.7 Advanced Design Techniques
References
12 Output Regulation
12.1 Output Regulation of Linear Systems
12.2 Nonlinear Local Output Regulation

12.3 Robust Local Output R	egulation
References	
13 Dissipative Systems	
13.1 Dissipative Systems	
13.2 Passivity Conditions	
13.3 Passivity-based Contro	l
13.4 Lagrange Systems	
13.5 Hamiltonian Systems	
References	
14 L2-Gain Synthesis	
14.1 H Norm and//2-Gai	
14.2 H Feedback Control	
14.3 L2-Gain Feedback Syn	
14.4 Constructive Design M	ethod
14.5 Applications	
References	
15 Switched Systems	
15.1 Common Quadratic Ly	· •
	of Planar Switched Systems
15.3 Controllability of Switch	•
15.4 Controllability of Switch	•
	nciple for Switched Systems
15.6 Consensus of Multi-Ag	•
15.6.1 Two Dimensional Ag	
15.6.2 n Dimensional Agent	Model without Lead
References	
16 Discontinuous Dynamica	l Systems
16.1 Introduction	
16.2 Filippov Framework	
16.2.1 Filippov Solution	
16.2.2 Lyapunov Stability C	riteria
16.3 Feedback Stabilization	
16.3.1 Feedback Controller	Design: Nominal Case
16.3.2 Robust Stabilization	
16.4 Design Example of Me	•
16.4.1 PD Controlled Mech	anical Systems
16.4.2 Stationary Set	
16.4.3 Application Example	
References	
Appendix A Some Useful Th	eorems
A.1 Sard's Theorem	
A.2 Rank Theorem	

References

Appendix B Semi-Tensor Product of Matrices

- B.1 A Generalized Matrix Product
- B.2 Swap Matrix
- B.3 Some Properties of Semi-Tensor Product
- **B.4 Matrix Form of Polynomials**

References

Index

版权信息

本站所提供下载的PDF图书仅提供预览和简介,请支持正版图书。 更多资源请访问www.tushupdf.com